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Collision-induced and multiple light scattering by simple fluids

By W. M. GELBART
Department of Chemistry, University of California, Los Angeles, California 90024, U.S.A.

JES N\
Y,

Most discussions of light scattering by simple (e.g. classical, atomic) fluids have
treated only ‘first order’ processes, i.e. those where the incident light is scattered only
once and the atomic polarizabilities are undistorted by interaction. Correspondingly
the scattered intensity is related by Fourier transform to the time- and space- pair
correlations. In this paper we describe instead the ‘second order’ processes of collision-
induced scattering (c.i.s.), in which the incident light is scattered only once but the
relevant polarizability is that of an interacting cluster of atoms, and multiple light
scattering (m.ls.), in which only undistorted polarizabilities are involved but the
incident light is scattered more than once. In both cases the scattered intensity is
determined by correlations involving more than two particles. In addition, the c.i.s.
experiments provide information about the many-atom polarization while the m.l.s.
studies offer new probes of large fluctuations in critical and nucleating fluids. We
discuss in particular theoretical and experimental c.i.s. investigations of the two-body
polarizability anisotropy induced by collision; it is concluded that the nature and
origin of non-point-dipole behaviour has yet to be satisfactorily explained. Similarly,
we consider how various depolarization m.ls. studies suggest improved analyses of
pair correlation properties in classical systems.
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INTRODUCTION

In this paper we present a brief, critical discussion of the present status of theoretical and
experimental studies of second order light scattering by classical fluids. The first second order
process treated is collision-induced light scattering (c.i.s.) in which the incident light is scat-
tered only once, but by interacting molecules which distort one another’s electronic charge
clouds (part a). The second case (part &) considered is multiple light scattering (m.ls.) in
which the light is scattered more than once, but only isolated molecule polarizabilities are
involved.

— We shall be concerned with classical fluids made up of simple molecules, i.e. molecules
; S whose polarizability anisotropy and internal degrees of freedom can be neglected. Suppose
OH we subject such a fluid to linearly polarized light whose electric field is described by

e =

E O E,(r,t) = Eyexp (iky-r—iwgt). (1)
= 9; Denote the instantaneous number density fluctuation at an arbitrary point r in the fluid by

Bor, 1) = X 8(r=Ru(6) =0, @)

where R;(¢) is the centre-of-mass position of the ith molecule (henceforth called ‘atom’) at
time ¢, and p, = N/V is the uniform (average) number density. Let « be the isolated atom
[ 149 ]
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360 W. M. GELBART

polarizability. Then, as discussed elsewhere (Gelbart 1974, 1978), the scattered electric field
at 1 = Ry, ¢ can be written, to second order in aAp, as

AEges = AE( + AED, (3)
where AE® = o j d(2) T(1—2)- Ap(2) Eq(2) (4)
and AE® — 2 f d(2) f d(3) T(1—2)- Ap(2) T(2—3)- Ap(3) Eq(3). (5)

Here, 2 = #/,¢' and 3 = r”,¢", and T(1-2) is the tensor that acts on the dipole moment at
2 to give the electric field due to it at 1 (and similarly for T(2-3)):

¢ [t
T(R,7) = & J " dkexp (—iker) Tu(R), (6)
(V221 [exp (kR)/R], R > OF,
T(R) ={ 0, otherwise. (7)

In writing the above equations, and in all the ensuing discussion, we drop multiplicative
factors such as n, (n?+2) /3, etc. (where n is the refractive index of the fluid) ; these can be found
in the more rigorous results presented elsewhere (Mazur 1958; Bedeaux & Mazur 1973;
Boots et al. 19754, b, 1976; Felderhof 1974; Bullough 1965; Oxtoby 1975; Oxtoby & Gelbart
19744).

The intensity of light scattered with frequency w, including first [AE{"] and second [AE®]
order contributions, follows (Gelbart 1974, 1978; Berne & Pecora 1976; Benedek 1968) from:

I(w) = f _+: dt exp (i0t) (AEs(Ra, t) AE¥ (Ra, 0)), (8)

where Rgq describes the position of the detector and (... ) denotes as usual the canonical ensemble
average over all fluid configurations {R,}. Throughout the remainder of our discussion we shall
assume that the sample is centred at the origin of the space-fixed coordinate system and that
Ra = Raj, ky = (wy/c)%, and E, = E,2. That is, the incident light is z-polarized and propa-
gates along the x-axis, the scattered light being detected along the y-axis.

In the case where Rq > |r| for all r in the illuminated volume, AE{ can easily be evaluated
and substituted into equation (8) to give the first order spectrum

I (w) = (|Eo|/Ra)® (wo/c)* Va* S(K, Q), (9)

where VS(K, Q) = f j: d¢ exp (i2¢) <px(t) p-x(0)), (10)
K = (0p/c) Ba— (w/c) # = k—k,, (11a)

Q = w—uw,, (11)

and Px(t) = fdr exp (—iK-r) Ap(r,t). (12)

Equations (9)—(12) comprise the familiar theory (Berne & Pecora 1976) of the Rayleigh—
Brillouin spectrum of a simple fluid; they relate the first order polarized light scattering line
[ 150 ]
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SECOND ORDER LIGHT SCATTERING 361

shape to the temporal Fourier transform of the pair correlation function of the density fluctu-
. . +w . . . . . . . .
ations. The 1ntegralf dQ I (Q) gives the integrated intensity at K; it is the spatial Fourier
—®

transform of the equilibrium pair correlation function g(|r|) — 1, where g(r) is the usual radial
distribution.

When equation (5) for the second order field is substituted into equation (8) a rather com-
plicated expression for the light scattering spectrum is obtained (see, for example, Boots ez al.
19754, 1976). Its important characteristics include: (a) it is partially depolarized, i.e. it
contains an x-, as well as a z-, component; () it varies with the fourth power of a; and (¢) it
involves the correlation of up to four density fluctuations. This inelastic spectrum was discussed
originally as a second order Raman process involving the roton modes of the quantum liquid
helium (Halley 1969; Greytak & Yan 1969; Stephen 1969). Mention of the /@ (w) line shape,
and its relevance to the analyses of c.i.s. and m.L.s. spectra of classical fluids, will be given later
in our discussion.

For the most part, however, we shall concentrate on the intensity integrated over frequency,

+o
f dQI® (Q2), given by (Gelbart 1978) :

9 = 2n——|E[2(w°)f dr, jVIdrz Lsdra f dry [Te(rs— )12 [ Ta(ra— o)l

x {Ap(ry) Ap(ry) Ap(rs) Ap(ry)) exp (iky: 1p) exp (—ik-1y)

x exp (—iky-r,) exp (ik-13). (13)

Here f = x or z denotes the polarization of the scattered light. Recall from equation (7) that:
. 3 3Bik, K} k2 iky 1

T, (r) = exp (iky7) [('fs—TzQ_—) 7+ ( 0—;3) l] (14)

acts on an oscillating (w, = ck,) dipole moment to give the resulting electric field at a vector
distance r away. ¥ denotes the volume of the sample ‘seen’ by the detector, while V; is the
illuminated volume. These integration limits arise from the fact that (see equation (5)) each
second order scattered field AE® corresponds to the incident field E, polarizing a density
fluctuation at r,[Ey(ry) # 0 if rye V4], followed by this induced moment giving rise
[via Ty (r,—15)] to a field at r, which radiates light seen by the detector [if r, € V5].

(a) Collision-induced scattering (c.i.s.)

Suppose all spatial correlations in the fluid are characterized by ranges which are very small
compared with the wavelength of light, i.e. the four-point density function {Ap(r,) Ap(ry)
Ap(r3) Ap(r)) ~ 0 whenever any relative separation becomes comparable with 27/ky = A,.
In this case all exponential phase factors in equation (13) can be replaced by unity and the
dipole propagator T, (r) (see equations (7) and (14)) reduces to its ky - 0 form:

Ty (r) > TO(r) = (3¢f—1)/r (15)
The integrated intensity for 90° fz scattering then becomes

IRlon > 275 |Bol* (%) (2 TR(R-R) = TR(R—R). (19
[ 151 1
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362 W. M. GELBART

The ensemble average in equation (16) has been evaluated for dense gases and liquids
by molecular dynamics computation (Alder et al. 1973a) of the two-, three- and four-body
positional correlations. In the p — 0 limit, on the other hand,

|Eo®

4 ©
120,00 5(n)* 1785 (2) g2 [ " aR B2 G2/t exp [~ VR /K TY, (1)

where V(R) is the interatomic potential. This result can be straight-forwardly evaluated for the
noble gases where « and V(R) are both known to high accuracy. It is found that the low density
I2) computed in this way (for Ar, say) is roughly 309, larger than that which is observed
(Buckingham & Dunmur 1968; Thibeau ¢t al. 1970; McTague et al. 1972; Lallemand 1972).
Similarly, the machine evaluations of equation (16) have established (Alder ef al. 19734) that
the theoretical values for I increasingly overestimate the measured (Thibeau et al. 1968)
depolarized scattering intensity: by the time liquid densities are reached,
I®2 [equation (16)]/I? [measured]

is as large as ten.

The above discrepancy has its origin in the implicit assumption made about the polarization
of the fluid by the incident light, namely that the constituent atoms behave as polarizable
points. Suppose we consider for the moment a system consisting of an interacting pair of atoms
and associate with every point a scalar polarizability density «(r). We demand further that
a(r) obey the following equation:

pu(r) = a(r)Ey+a(r) fdr’ TO(r—r")-p(r). (18)

Here p(r) is the local polarization (dipole moment density), T is the static dipole tensor
defined by equation (15), and E, is the incident electric field (now assumed to be uniform).
For our system, we have in mind a pair of noble gas atoms a distance R apart. The induced
dipole moment and polarizability tensor associated with this diatom are then given by:

§ = f dru(r) = o, ,(R)E, (19)

where || and L refer to E, being alternately parallel and perpendicular to the internuclear
axis. Approximating the polarizability density by the sum of isolated atom contributions, we
write
a(r) = ay(|r—Ry|) +ap(|r—Ryl), (20)
where R, and Ry denote the positions of the nuclei.
Note that if we use the point dipole form for the atomic polarizability densities, e.g.

ay(r) = ad(r—R,), ' (21)
then equations (18)—(20) may be solved by iteration to give the familiar classical, dipole-
induced-dipole (d.i.d.) result (Felderhof 1974):

B(R) = o(R) —a,(R) = 6a2/R5+6a3/R+ 0ot/ RY). (22)

This is the origin of the 6a2/R3 factor appearing in the integrand of equation (17) and of the

T @ factors in the general ensemble average of equation (16). Thus we can describe corrections

to the point dipole theory by simply introducing a more reasonable distribution than equation
[ 152 ]
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(21) for a,(r), namely, one in which the polarizability is spread out realistically through the
atom. This is the approach suggested by Oxtoby & Gelbart (19754) (see also Thiemer & Paul
(1965)).

Specifically, Oxtoby & Gelbart used atomic, Hartree-Fock, finite electric field charge
densities, divided the atom into sperical shells centred at the nucleus, and took the total dipole
moment of each shell as a measure of the polarizability density at that distance from the nucleus.
This procedure defines the approximation (z = r cos )

an(r) = (1/Ey) f: d¢ fo d0 sin Op(r6¢; E,)z. (23)

Here p(r0¢; E,) is the electron charge density of an atom which sits in a constant electric
0

field Ey2. o, (r) is normalized so thatf r?dra,(r) = a. If equation (23) is used in equations
0

(18)—(20), then at large separations the d.i.d. result of equation (22) is recovered while at
shorter distances there are corrections due to atomic overlap. More explicitly, a single iteration
of equation (18) leads to

pR) =3 [ dr,, [ dry ?iﬂ—fgfli 2a(r1s) @n(ran), (24)

where r;, = r,;, — r,5. Evaluations of equation (24) for the light noble gases were carried out
by Oxtoby & Gelbart (1975a). The result of a second iteration of equation (18) was similarly
investigated (Oxtoby & Gelbart 19755), leading to contributions to #(R) which reduce for
large R to the 1/R® d.i.d. terms of equation (22) and which include the appropriate charge
cloud overlap corrections at shorter distances. They also estimated the correlation and exchange
contributions. Their final results for #(R) were found to give good agreement with experimental
data on argon (e.g. the low density /& was reduced by ca. 30 %, from the point dipole value)
and with the much more time-consuming Hartree~Fock calculations on the He—He diatom
(O’Brien et al. 1973; Fortune et al. 1974). Finally, B. J. Alder, J. C. Beers, H. L. Strauss &
J. J. Weis (1978, personal communication) used the Oxtoby-Gelbart #(R) for argon to evaluate
I for a liquid at a density just above that of the liquid-solid transition (see equation (16))
with 6a2T@ (R) = (6a2/R%) (3RR—1I),, replaced by Seuc.(R) (BRR—1),,; the theoretical
values were found to be significantly reduced from that of the point dipole model and gave good
agreement with experiment.

The above approach, while providing a simple physical interpretation of the breakdown of
d.i.d. theory, involves several questionable assumptions. These assumptions have been discussed
critically during this past year, within the context of various rigorous treatments (Sipe &
Van Kranendonk 1978; Clarke ¢t al. 1978; Oxtoby 1978) of the polarization of interacting
atoms. Sipe & Van Kranendonk (1978) have pointed out that calculations based on an Oxtoby—
Gelbart (or Thiemer—Paul) polarizability density give increasingly poorer results for the suc-
cessively higher multipole moments induced by non-uniform electric fields; the induced dipole
moment is, however, correctly described. Clarke et al. (1978) have discussed similar difficulties
associated with the Oxtoby—Gelbart choice of polarizability density and internal electric field;
they are led to an alternative formulation of the collisional polarizability problem which
involves a direct calculation of the Coulomb interaction between a pair of polarized atoms.
A convenient way to expose the physical ideas behind these two discussions, and to appreciate

[ 153 ]
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the approximate nature of the earlier Oxtoby—Gelbart theory, is to outline here the most
recent work of Oxtoby (1978).
Let us write the energy of two interacting atoms in a uniform electric field as

H=H,+Hzg+V, (25)

where H, is the Hamiltonian for atom A in the electric field (similarly for Hg) and Vis the sum
of Coulomb attractions and repulsions between the electrons and nucleus of A and those of B.
Then, treating V as a perturbation, the ground state energy of the diatom in a field can be
expressed in the usual way as (Schiff 1969)

8= o) +eB) 4 CA8) HB)IY] Pola) P4(B)
+ 5 () Wo(B) V| EalA) (B2 [ea(A) + ea(B) — e0() = em(B)] +

except for
n=m=0

" (26)

Here ¢,(A) and ¥, (A) refer to the energy and wavefunction associated with the nth eigenstate
fH,:
o Ha HyW,(A) = €,(A)%,(A). (27)

Let the charge density associated with the ground state of H, be expanded in powers of the
electric field strength £ according to:

pa = PP +EpQ + EZpQ ... (28)

It is easy to show that the first order term [{¥(A) ¥y (B)|V | Po(A) ¥,(B))] in equation (26)
can be written as (assuming atoms A and B to be identical)

Aedi(first order in V) = Vy(R) —4E3«,, ,(R) + O(E}), (29)

where Vo(R) = fdrfdr' pR(r) pR (1) /| r—1'| (30)
is the Coulomb interaction between the two zero-field atoms, and

a,  (R) = i (R) +af¥Pr (R)
— -2 [ar [ar ALLLELT) PR (1) P () ~2 [ar [ar o (1) P (r) +p2 (1) pR ()] 5,

ST |r—r|

is the interaction (pair) polarizability within the approximation of the above first order
perturbation theory. Again, as before, the || and L subscripts refer to the electric field being
alternately parallel and perpendicular to the diatom axis.

Oxtoby (1978) has shown that the ‘linear’ contribution to the pair polarizability can be
rewritten in the form:

ainesr = 3 [[ar [ dr s (1) V2 (), (32)
where x, (r) satisfies the equation:
V-xa(r) - Ey = —Egp (1), (33)
and that the hyperpolarizability contribution can be similarly expressed as
s = 2 [ar [ar Do (n) o () 4ot () o0 (0] = (a0
where E\V: yvrer (r)-Ey = — E3 p® (). (35)

[ 154 ]
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Now recall the classical electrostatics equations relating p(r), the local dipole moment, E(r),
the total electric field at r, and the linear and lowest order nonlinear susceptibilities x'(r) and

X : ' ' ”
@) a(r) = X'(r) E(r) +x"(r) : E(r) E(r). (36)
The total electric field is defined by

E(r) = Eqppuea+ f dr’ po (r f ArV o a(r). (37)

A single iteration of equations (36) and (37) leads to a a(R) which is equal to the sum of
alivear and abvrer defined by equations (32) and (34). Since equations (32) and (34) follow
directly from a ‘first principles’ quantum mechanical calculation of the response of interacting
atoms to an applied electric field, this result establishes the validity of continuum electrostatics
theory for local descriptions [see equations (36) and (37)] of molecular systems.

While the above argument of Oxtoby (1978) vindicates the basic starting point of the
Oxtoby-Gelbart approach, it also makes explicit several shortcomings:

1. The hyperpolarizability terms given by equations (34) and (35), and discussed also by
Clarke et al. (1978), were not considered.

2. Because of the overlap between p,(r) and pg(r’), the behaviour of the total electric field
at r = r’ must be treated more carefully than in the Oxtoby-Gelbart formulation (see Sipe
& Van Kranendonk (1978) and Clarke ef al. (1978) for a thorough discussion of this point).
In particular, the term —%n u(r) in equation (37), arising from the second term in

, , 4n ,
VE(|r—r|)-t = Tioso (r = 1) |eq. a0 =5 18(r—1),

must be retained: it provides a non-vanishing contribution to the trace of «!"®** which was
lacking in the original Oxtoby—Gelbart theory.

3. The form of the local susceptibility x(r) is found to be different from that postulated by
equation (23).

4. A second iteration of the continuum equations (36) and (37) is shown to lead to difficulties
associated with the non-uniformity of the first order field. More explicitly, (i) the applied field
polarizes the charge distribution of one atom which (ii) induces a quadrupole moment in the
other which in turn (iii) induces a dipole moment back in the first. The second step, involving
polarization due to a field gradient, cannot be correctly calculated via a local susceptibility
description. (See Sipe & Van Kranendonk (1978) and Clarke ¢t al. (1978) for a more complete
analysis of this problem.)

The hyperpolarizability contribution to #(R) has been evaluated by Clarke et al. (1978)
within a scheme equivalent to that outlined by equations (27)-(35) above. In the case of the
He—He diatom, they find that the deviations from point dipole behaviour due to a!i?®e* charge
cloud overlap corrections are largely compensated by those from the «b¥Pe* terms. (A similar
conclusion is reported by Oxtoby (1978) for the case of two interacting hydrogen atoms.)
Thus we must regard as fortuitous the agreement reported earlier in this section between the
Oxtoby-Gelbart #(R) values (which neglect the hyperpolarizability effects) and those obtained
by experiment and Hartree-Fock calculation. A simple explanation of the non-d.i.d. effects
remains to be found. In particular, careful additional studies must be carried out on the import-
ance of exchange effects and of second order perturbation theory contributions [see equation
(26)] to the interaction polarizabilities.

[ 155 ]
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Until last year all measurements of /& (p — 0) indicated (Thibeau et al. 1970; McTague
et al. 1972; Lallemand 1972) that {([#(R)]?),_,, (see equation (17)) was ca. 30 %, smaller than
‘the value indicated by fg..4.(R) = 6a2/R3. Thus it was believed that a proper theory must
account for a substantial lowering of the interaction anisotropy. Recent data of F. Barocchi
(1977, personal communication) however, indicate that ([#(R)]?)exp, may actually exceed
{B(R)Vi1a), i-e. that the deviations of #(R) from classical point dipole behaviour are not
negative. This possibility is also suggested in recent attempts to distinguish between different
forms for #(R) from analyses of the line shape of the collision-induced spectrum. Alder et al.
(1973 ), for example, have used the molecular dynamics method to evaluate I (w) for Ar,
with several different forms of #(R), over a broad range of thermodynamic states. For room
temperature and densities less than 500 amagatt the computed spectra are not very sensitive
to the choice of #(R): for each #(R) the exponential wings (|2| > 15 cm~!) agree with experi-
ment within the uncertainties due to the laboratory measurements and to the limiting statistics
of the computer simulation. At higher densities, e.g. for the triple point (7"~ 90 K, p = 780
amagat), the differences in short range #(R) behaviours appear to give dissimilar high fre-
quency slopes, but further calculations (e.g. at still higher densities) are necessary to establish
this more definitely. In any case, the f,.4. (R) (|| > 15 cm~1) lineshape appears to be
closest to experiment, suggesting that the deviations from 1/R3 behaviour implied by #(R)’s
which include overlap corrections only must be compensated by other non-point-dipole effects
(such as the hyperpolarizability or exchange or second order terms mentioned earlier).

The fact that the depolarized lineshape is relatively insensitive to #(R) at low densities is
consistent with the fact that the dominant collisional effects in these thermodynamic states
involve large R; and, at large R, all of the #(R) vary as 6a2/R3. At higher densities the shorter
range interactions become important and the calculated scattering shows the differences in the
B(R) values. The wings are precisely the part of the line shape which is expected (Stuckart ef al.
1977; Bucaro & Litovitz 1971 ; Oxtoby 1977) to be most dramatically affected by short range
two-body dynamics. (See, however, the calculations and discussion of Berne et al. (1973).)
However, as mentioned above, even the wings are well accounted for by a d.i.d.—f#(R). Madden
(1977) has shown further that all observed features of the line shape, including both the quasi-
elastic (|2| < 15 cm™1) Lorentzian peak (An et al. 1976) and the exponential wings, are well
accounted for by a single d.i.d. polarization mechanism. Thus it appears possible that a proper
calculation of the collisional anisotropy will reveal f(R) ~ f4;.q. (R) for all R of interest. The
question of non-point-dipole #(R) behaviour remains unanswered, a challenge to new theoretical
and experimental work on the classical atomic fluids. There is also beginning to emerge an
analogous set of problems in the study of molten salt solutions (Bounds e al. 1977; Woodcock
1975) and superionic conductors (Rahman 1976; Geisel 1978) but there the collisional polariz-
ability effects are much larger and the fluid structure and dynamics much more subtle.

(b) Multiple light scattering (m.l.s.)

Consider again the starting expression (see equation (13)) for the second order integrated
scattering intensity for atomic fluids. Whereas above we discussed the £, — 0 limit, we now
treat the situation where the range of spatial correlations between particle positions becomes
comparable with the wavelength of incident light. In this case (e.g. critical fluids) all the

1 1 amagat unit = 0.0446 mol 1~ at unit pressure.

[ 156 ]
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factors in the integrand of equation (13) must be retained without simplification. Recall that
T;,(r) - u can be rewritten as
. kG AN g 1 ik, A
exp (ikyr) (2 [(#x7) ]+ (5-22) [99(7-2) - 1)
= electric field at r due to oscillating (ck,) dipole uat origin, (38)

thereby making explicit the fact that the electric field is transverse only in the far (k,7 > 1)
zone. That is, the true radiation term arising from 1/r survives only because of the long-range
correlations. The 1/7% and 1/r2 contributions can henceforth be associated with the collision-
induced (short range correlation) effects discussed in part (a). We write:

I® = I® (cis.) + 1@ (d.ls.), (39)
where 1@ (c.is.) is the k, — 0 limit of equation (13) and 2 (d.ls.) is equation (13) with only
the 1/r terms retained in the T, (r) factors.

It is natural at this point to decompose the 4-point correlation function into its disconnected
and connected parts (Korenman 1970):

{Ap(1) Ap(2) Ap(3) Ap(4)) = CAp(1) Ap(2)){Ap(3) Ap(4))+(13)(24)

+<{14)<23)+<Ap(1) Ap(2) Ap(3) Ap(4))e-  (40)
The connected (¢) correlation function is what remains after substracting all possible products
of lower order connected correlation functions involving the same density fluctuations. [Since
{Ap) = 0, the 2- and 3-point correlation functions, {Ap(1) Ap(2)) and {Ap(1) Ap(2) Ap(3)),
naturally contain no disconnected contributions.] The importance of this decomposition is that
the connected correlation functions are short-ranged, equalling zero when any pair of argu-
ments is separated by a macroscopic distance. Thus {1 2 3 4), will contribute to the depolarized
light scattering intensity only when all four atoms are within a correlation length £ of one
another; £ (to be discussed below) is small compared to the dimensions of Vg and Vi. The
disconnected terms in equation (40), on the other hand, will contribute to 72 (d.Ls.) for con-
figurations in which the pairs of atoms are separated by macroscopic distances. They are thus
expected to dominate the double light scattering intensity by a factor of V/£8 (Swift 1973); the
{1234), contribution can be neglected.

The contribution of the disconnected terms in equation (40) to I/? (d.l.s.) was first evaluated
analytically for the special case where the illuminated volume V| is located at the centre of a
much larger, approximately spherical observed volume Vg (of radius Rg). Oxtoby & Gelbart
(1974a) found in particular that

ot (w8 6473
19 (d1s) ~ 7z (%) 1B S5 pTicd R (41)

Here it has been assumed that the long range part of the pair correlation function can be
expressed in the usual Ornstein-Zernicke form:

1 2)10ng range (r) = gr.(r)—1 = (£o/7) (exp (—71/E)), (42)

and that k§ = 2n£/A, < 0.3 as is indeed the case in all of the experiments which we analyse.
Note that the right hand side of equation (41) is essentially the square of the first order scattering
intensity given by equation (9):

2

+
f dQIN(Q) ~ Ka2S(K) ~ K L2,

@
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The fact that real double scatterings take place, i.e. that some of the light waves scattered by
atoms in V; do not get out of the cell without being scattered again, means of course that the
detector measures contributions to I$2 from atoms polarized outside the path of the incident
beam. Thus the observed intensities no longer depend only on ¥y, but also on the size of part
of the sample which would otherwise be ‘dark’. In particular we see (equation (41)) that for
a spherical Vg with radius Rg, [2 (d.Ls.) is proportional to Rg.

In order to discuss experimental data for Xe it is necessary to approximate I® (c.i.s.) for
Xe near its critical point. As described in detail elsewhere (Oxtoby 1975; Gelbart 1978) we
can easily arrive at the following rough estimate of the collision-induced depolarization:

I@ (cis.) ~ (a%f |E,|2Vig pius/RE) (6 x 1022 cm3). (43)

(Here Vig is the portion of the illuminated volume seen by the detector.) A more accurate
estimate can be obtained by measurements carried out at py;, but at temperatures far from
T,. Nevertheless equation (43) suffices nicely for purposes of the present discussion. Recalling
equation (39), we now add equations (41) and (43) to obtain

ot
Iuves ~ 75 M 1Bl T: { (6 10% cm-s) + 55 o203 Ro(luB)Y). (34

Furthermore, as long as k£ < 0.3, second order scattering remains a small effect compared
with first order scattering. Thus the polarized intensity Loy ., can be well approximated by
equation (9) from the introduction:

I(total)zz ~ Izz |E0| Vi S(K D2 |E0|2 V[ 4ng0€2. (45)
cmtlcgl R
poin’

(Note that k¢ S 0.3 implies K& < 0.3 since K = |k—k,| ~ k, for 90° scattering.) Dividing
equation (44) by equation (45) gives, finally:
I, A a® [6x102cm~3

- 2 o PR st g R ) (40

£ is the only quantity in equation (46) which is sensitive to the temperature in the critical
region. Consider an experiment in which Xe is prepared at its critical density, and T is lowered
towards T,. Then, as the critical point is approached and £ becomes larger, A will initially
decrease. This is because I, is dominated by I (c.i.s.) which stays constant since it involves
only contributions from short-range correlations. But in this same region I, increases with £2,
and thus A decreases as £-2. For temperatures closer to T,, however, the double scattering
term in I2) takes over, increasing as£%. A is then expected to increase with £2. The exact position
and shape of the minimum will depend of course on the actual values of p,, &), Rg and k.

Reith & Swinney (1975a) have carried out experiments which measure the depolarization
ratio for a sample of Xe at its critical density, over the temperature range 0.05 < 7T— 7, < 10°.
Most of the results were obtained with an Ar-ion laser (A, = 4679 A),T butat 7— T, = 0.496°
an Ar laser (5145 A) and a He-Ne laser (6328 A) were also used. The incident light from the
laser was linearly polarized perpendicular to the scattering plane and the light scattered at
90° passed through a lens and rotatable linear polarizer. The lens formed an image of the sample
on a pair of crossed adjustable slits. The horizontal slit was adjusted so that the observed

+ 1A = 10-m = 10-1nm.
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sample heights ranged from § = 0.261 to 1.490 mm; the vertical slit which determined the
width W of sample seen by the detector was held fixed at W = 0.54 mm. Light passing through
the crossed slit (S x W rectangle) was imaged by a second lens onto the cathode of a photo-
multiplier tube which measured its intensity. The collimated, focused beam passing through the
sample had a diameter of 0.21 mm. Although this experimental geometry is quite different
from that assumed in the theoretical discussion above, the theory can be tested qualitatively
by associating Rg with S. In particular Reith & Swinney (1975a) found a curve of A against
T — T, which had the predicted shape, the minimum lying at 1-2° from 7. Furthermore,
A was found to increase linearly with .S and £}, in agreement with equation (46).

Recall that the dominant contribution to 7, arises from the disconnected term (Ap(r,) Ap(rs))
{Ap(ry) Ap(r,)) in the 4-point correlation function. This contribution arises from the inter-
ference between two doubly scattered waves, the first involving the successive polarization of
atoms 1 and 2 [see the T, (r,—r,) term in equation (13)] and the second involving 3 and 4
[see Ty, (rs—r1,)]. {13)(24) forces the initial polarizations at r, and r, to take place within
a correlation length of one another and similarly for the final (second) polarizations at r, and
r,. The r,—r, and ry-r, separations can in principle be small (i.e. S £) but these configurations
are much less likely (by at least the factor of £/ 7} mentioned earlier) than larger separation
ones. Thus the two pairs 1-2 and 3—4 are essentially uncorrelated, and the double scattering
event can be regarded as successive (and independent) single scattering.

Reith & Swinney (1975 a) have exploited this conclusion by expressing the second order d.l.s.
intensity in terms of the familiar single scattering cross sections, I (90°) = o(|E,|2 Vis/R%);
here oy = a2§S(| ky—k|) ~ 4nak§p2é,E? for k& < 0.3. In particular, they show that the
depolarization ratio assumes the form

A = I9 (cis.)/L,+0,gS. (47)

g is a constant which is determined completely by the characteristics of the volumes ¥} and V5.
In the case of the Reith-Swinney experiment, ¢ ~ 1n. Since I, ~ £? and o, ~ £§£2 we see
that equation (47) predicts the same £§(7°), &, and S dependence for A as was discussed earlier;
when ¢ = %n, equations (47) and (46) are in fact identical. What is significant about the
particular form of equation (47) is that A is shown to be linear in o, the differential cross
section for single scattering. o, is proportional (by a factor of a2§) to the all-important static
structure factor §'(K) which is, in turn, proportional to the isothermal compressibility kg, etc.
Since I (90°) = oo(|Ey|2 Vis/R%), 0y has commonly been obtained from absolute intensity
determinations of polarized scattering. However, because ratios of scattering intensities are
measured more accurately and easily than absolute cross sections, equation (47) suggests
a valuable new method for learning about o,. Reith & Swinney (19754,5) have shown that it
is indeed feasible to determine o, from the depolarization ratio measured in critical fluids and
in solutions of macromolecules whose dimensions are not too small compared with the wave-
length of light.

Experimental studies of the critical behaviour of the depolarization ratio have also been
pursued by Beysens ¢t al. (1975) and by Garrabos et al. (1976). Their results provide further
verification of the temperature dependence discussed above. Also, Beysen & Zalczer (1977)
have analysed the frequency dependence of the depolarized intensity in the critical region.
They discuss how the experimental lineshape can be expressed as a convolution of /M
S(k', ') with itself (see Boots ef al. (1975a,0, 1976) and Reith & Swinney 1975a)), consistent
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with the spectrum being dominated by double scattering events which involve independent
and successive single scatterings.

Throughout the above discussion we have neglected the double scattering contributions to
the polarized intensity, as is appropriate for £y& < 0.3 and k, 1. k. Nevertheless, even though
I? (d.ls.) is more than one hundred times smaller than I over the temperature range of
interest, the angular distribution of I,y ,, can be significantly distorted by double scattering
contributions. This possibility was first suggested by Oxtoby & Gelbart (19745) who showed
that small double scattering contributions give rise to easily observable downward curvature
in the usual Ornstein-Zernicke-Debye plots of 1/, ., against sin? (30,). (Here 65 is the
angle between k, and k.) Neglect of this effect leads to spurious inferences about the pair
correlation function for critical fluids. This point has been treated more thoroughly by Boots
et al. (1975a, b, 1976), who have developed a general, rigorous theory of multiple light
scattering.

In the theory of Boots ¢t al. (19754,b, 1976) the calculated cross sections contain the various
‘local field’ correction factors (e.g. powers of n and (n2+2)/3, etc.) which we have dropped
in the present discussion, and attenuation of the incoming and outgoing light has been properly
treated. By using the critical point parameters and V5 and ¥; dimensions appropriate to the
depolarization ratio measurements on CO, of Trappeniers ¢t al. (1975), Boots et al. (1975a,b,
1976) calculated values for A which were in excellent agreement with experiment over the
temperature range 0.02° < 7 — T, < 0.7°. This suggests negligible contributions from collision-
induced effects, beam deflection by gravity-induced density gradients, and triple and higher
order multiple scattering.

The only published experimental study of higher than double scattering by simple fluids is
that of Trappeniers et al. (1977). Recall that just as 12 (d.1s.), involving two successive single
scatterings, has been shown to vary as o2, I (t.1s.) is expected to vary as 0§ ~ k¥. As argued
by Trappeniers ef al. (1977) however, its dependence on ¥ should be negligible compared to
that of I2 (d.Ls.). This is because the second scattering event can take place anywhere in the
sample, rather than only in V4. Now suppose we approach near enough to 7, along the critical
isochore, so that triple scattering becomes observable. Then since

AQ, = (I (d1s.)/L,) ~ S for small Vi-height S, whereas A®), = LY (c.is.)/L,

is independent of §, a plot of A against § should yield AZ  + A® when extrapolated to
S = 0. However, since A@), is essentially constant in the critical region, this § = 0 intercept
should vary with temperature according to AR, = (£ (tls.)/L,) ~ «y/kp = (T—T,)~>*.
Over the range 0.02° < T— T, < 0.1° this is indeed the behaviour found by Trappeniers
et al. (1977). At temperatures still closer to the critical point, the measurements are disturbed
by fluid inhomogeneity due to gravity-induced density gradients and by higher order multiple
scattering. ‘

Another interesting application of the multiple scattering theory, recently considered by
Metiu (1977, 1978), involves the study of fluid mixtures undergoing phase separation via
spinodal decomposition. For systems which are quenched into their spinodal region, thermo-
dynamic instability results in amplification of long wavelength concentration fluctuations (the
effective diffusion coefficient is negative). Whereas it is generally believed that the linearized
Cahn equation (Langer ef al. 1975) provides a qualitatively correct description of the concen-
tration fluctuations at short times, the light scattering evidence is still somewhat ambiguous. As
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Metiu has pointed out, part of the difficulty may be associated with multiple light scattering
contributions which have not been considered in previous analyses. He has shown for example,
that whereas the linearized Cahn equation predicts that the intensity of a single scattering
interference ring will grow exponentially, the growth associated with double scattering contri-
butions is decidedly non-exponential. Non-exponentiality can also arise, of course, from the
breakdown of the linearization of the Cahn equation. In any case, Wong & Krobler (1977)
have recently reported significant deviations from exponential behaviour in their study of the
growth of interference ring intensity following the quenching of isobutyric acid-water mixtures
into their spinodal regions. Further experimental and theoretical work will be of great import-

|
o ance in helping to understand further the dynamics of fluctuations in these thermodynamically
;5 S unstable systems.
2 : This research was supported in part by N.S.F. grant CHE 76-01807.
|
= O
O REFERENCES (Gelbart)
=w Alder, B. J., Weis, J. J. & Strauss, H. L. 1973a Phys. Rev. A7, 281.

Alder, B. J., Strauss, H. L. & Weis, J. J. 19735 J. chem. Phys. 59, 1002.

An, S. C., Montrose, C. J. & Litovitz, T. A. 1976 J. chem. Phys. 64, 37117.

Bedeaux, D. & Mazur, P. 1973 Physica 67, 23.

Berne, B. J., Bishop, M. & Rahman, A. 1973 J. chem. Phys. 58, 2696.

Berne, B. J. & Pecora, R. 1976 Dynamic light scattering. New York: John Wiley & Sons.

Benedek, G.B. 1968 In Statistical physics phase transitions and superfluidity (ed. R. Chrétien et al.). New York:
Gordon and Breach.

Beysens, D., Bourgou, A. & Charlin, H. 1975 Phys. Lett. A 53, 236.

Beysens, D. & Zalczer, G. 1977 Phys. Rev. A 15, 765.

Boots, H. M. J., Bedeaux, D. & Mazur, P. 19754 Physica A79, 397.

Boots, H. M. J., Bedeaux, D. & Mazur, P. 19755 Chem. Phys. Lett. 34, 197.

Boots, H. M. J., Bedeaux, D. & Mazur, P. 1976 Physica A 84, 217.

Bounds, D. G., Clarke, J. H. R. & Hinchliffe, A. 1977 Chem. Phys. Lett. 45, 367.

Bucaro, J. A. & Litovitz, T. A. 1971 J. chem. Phys. 54, 3846.

Buckingham, A. D. & Dunmur, D. A. 1968 Trans. Faraday Soc. 64, 1776.

Bullough, R. K. 1965 Phil. Trans. R. Soc. Lond. A 258, 387.

Clarke, K., Madden, P. A. & Buckingham, A. D. 1978 Molec. Phys. 36, 301.

Felderhof, B. U. 1974 Physica 76, 486.

Fortune, P. J., Certain, P. R. & Bruch, L. W. 1974 Chem. Phys. Lett. 27, 333.

Garrabos, Y., Tufeu, K. & LeNeindre, B. 1976 C.r. hebd. Scéanc. Acad. Sci., Paris 282, 313.

Gelbart, W. M. 1974 Adv. chem. Phys. 26, 1.

Gelbart, W. M. 1978 In Correlation functions and quasiparticle interactions in condensed matter (ed. J. W. Halley), New
York: Plenum.

PHILOSOPHICAL
TRANSACTIONS
OF

P

< : Geisel, T. 1978 Solid St. Commun. (In the press.)
= N Greytak, T.J. & Yan, J. 1969 Phys. Rev. Lett. 22, 987.
< Halley, J. W. 1969 Phys. Rev. 181, 338.
— > Korenman, V. 1970 Phys. Rev. A 2, 449.
O —~ Lallemand, P. 1972 J. de Phys. 33, C1-257.

25 Langer, J. S., Bar-on, M. & Miller, H. D. 1975 Phys. Rev. A 11, 1417.
=4 — Madden, P. A. 1977 Chem. Phys. Lett. 47, 174.
= Q) Mazur, P. 1958 Adv. Chem. Phys. 1, 309.
T O Metiu, H. 1977 Chem. Phys. Lett. 52, 337.
= w Metiu, H. 1978 J. chem Phys. 68, 1538.

McTague, J. P., Ellenson, W. D. & Hall, L. H. 1972 J. de Phys. 33, C1-241.

O’Brien, E. F., Gutschick, V. P., McKoy, V. & McTague, J. P. 1973 Phys. Rev. A 8, 690.
Oxtoby, D. W. & Gelbart, W. M. 19744 J. chem. Phys. 60, 3359.

Oxtoby, D. W. & Gelbart, W. M. 19745 Phys. Rev. A 10, 738.

Oxtoby, D. W. 1975 Ph.D. thesis, University of California, Berkeley.

Oxtoby, D. W. & Gelbart, W. M. 19752 Molec. Phys. 29, 1569.

Oxtoby, D. W. & Gelbart, W. M. 1975b Molec. Phys. 30, 535.

Oxtoby, D. W. 1977a Molec. Phys. 34, 987.

PHILOSOPHICAL
TRANSACTIONS
OF

[ 161 ] 26-2


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

p
[\ \

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

Y |

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

372 _ W. M. GELBART

Oxtoby, D. W. 1978 J. chem. Phys. 69, 1184.

Rahman, A. 1976 J. chem. Phys. 65, 4845.

Reith, L. A. & Swinney, H. L. 1975a Phys. Rev. A 12, 1094.

Reith, L. A. & Swinney, H. L. 19756 Opt. Commun. 17, 111.

Schiff, L. I. 1969 Quantum mechanics (3rd edition). New York: McGraw-Hill.

Sipe, J. E. & Van Kranendonk, J. 1978 Molec. Phys. 35, 1579.

Stephen, M. J. 1969 Phys. Rev. 187, 279.

Stuckart, R. A., Montrose, C. J. & Litovitz, T. A. 1977 Discuss. Faraday Soc. 65, 94.

Swift, J. 1973 Ann. Phys. 75, 7.

Thibeau, M., Oksengorn, B. & Vodar, B. 1968 J. de Phys. 29, 287.

Thibeau, M., Tabisz, G. C., Oksengorn, B. & Vodar, B. 1970 J. Quant. Spectrosc. Radiat. Transfer 10, 839.
Thiemer, O. & Paul, R. 1965 J. aem. Phys. 42, 2508.

Trappeniers, N. J., Michels, A. C. & Huijser, R. H. 1975 Chem. Phys. Lett. 34, 192.

Trappeniers, N. J., Huijser, R. H. & Michels, A. C. 1977 Chem. Phys. Lett. 48, 31.

Woodcock, L. V. 1975 In Advances in molten salt chemistry (ed. J. Braunstein et al.). New York: Plenum Press.
Wong, N. & Knobler, C. M. 1977 J. chem. Phys. 66, 4707.

Discussion

R. K. Burrouvcu (Department of Mathematics, U.M.I1.S.T., PO Box 88, Manchester M60 1QD).
I should like to make a general comment on multiple scattering. Professor Gelbart is concerned
with microscopic scattering processes between polarizable atoms or molecules. The macroscopic
optical properties of his simple classical fluid are built up from these microscopic processes.
In this picture, single scattering is not the first Born approximation Dr Pike has mentioned.
Single scattering with its proper factors of refractive index (dielectric constant) contains multiple
scattering prdccsses of all orders which can be explicitly summed and subsumed in just these
refractive index factors (Bullough ef al. 1968; Bullough & Hynne 1968). In consequence, there
is the risk that in isolating one multiple scattering process for particular study its contribution
is being counted twice, or at least, not precisely once. This is exactly the situation surrounding
collisionally induced three-body scattering: two three-body multiple scattering diagrams arise
and the collisionally induced scattering (c.i.s.) in both sums into the macroscopic factor multi-
plying single scattering. In the four-body scattering two of the three c.i.s. diagrams sum into
the macroscopic factor. The third, which I call the four-body depolarization diagram, is
concerned with the depolarization discussed by Professor Gelbart, but there are already signifi-
cant differences of detail between the results of the exact study (Bullough ef al. 1968; Bullough
& Hynne 1968) and Gelbart’s apparently more ad hoc four-body scattering term. I am not
familiar with Professor Gelbart’s derivation of this scattering term: thus I would like to ask
him first of all to what extent he feels this possibility of overcounting can be discounted.

In the exact study there is also a double infinity of 5, 6, 7, ... -body c.i.s. diagrams which
can be summed into the four-body depolarization diagram. This means roughly that there isa
refractive index factor on this diagram. My colleague F. Hynne in Copenhagen has explicitly
carried out some of this summation in a recent paper (Hynne 1977), in terms of a ‘screened’
photon propagator and a ‘screened’ outgoing scattering process. I cannot say that these
additional processes can change the estimate of the four-body depolarization diagram by 30 %
at the low density of Ar used for the experiments. Certainly, for condensed liquids (refractive
index = 1.5) refractive index factors can change the absolute value of the total scattered
intensity by a factor of 3. For Xe near the critical point, the factor is about 1.4. However, the
all order multiple scattering theory shows that there is yet another feature involved, namely
that infinite series of scattering terms involving the same power of atomic number density
arise. These terms include dipole-induced-dipole effects of the kind considered by Professor
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Gelbart. I think it would be worthwhile looking in detail at the totality of these terms in con-
nection with the d.i.d. effects Professor Gelbart mentions. This is my second point.

Incidentally, I am a bit concerned with the problem of overcounting in the argument
Professor Gelbart uses for distributed polarizability within the atoms. The definition of the
fundamental polarizable units in classical dielectric theory is always arbitrary. The multipole
contributions constituting the finite size corrections to point dipoles are well defined in principle
however and in using them overcounting can be avoided. Their important effects in connection
with the c.i.s. are static quadrupole and octopole effects depending on VVV =1 and VVVV r—1,
but these effects converge very slowly. Some years ago my colleague B. V. Thompson and myself
developed a theory (Bullough et al. 1968) of the dielectric properties of a classical fluid from
the first principles of quantum mechanics, deriving. the propagator r~! exp (ik,7) of the vector
potential rather than the dipole propagator (VV +43U) r~'exp (ikyr). The calculation
becomes extremely complex without a multipole expansion which is the natural choice for
neutral ‘classical” atoms. My present opinion is that the all-order summation of polarizability
terms at fixed number density referred to already, together with a judicious inclusion of
multipole corrections, has the merit of providing a controlled count on contributions and may
be the best approach to the d.i.d. problem. As my third point I would therefore like to ask
Professor Gelbart for any comments he might have on this remark.

Concerning the multiple scattering (m.l.s.) Professor Gelbart considers, it is perhaps useful
to point out that Fixman (1955) first wrote down the four-body expression which leads to
depolarization of the scattered light. Since that time F. Hynne and myself have developed the
general theories of multiple scattering which treat all orders of multiple scattering in terms of
‘unscreened’ (Bullough & Hynne 1968) and ‘screened’ (Hynne 1977) propagators, and in-
clude all orders of depolarization diagrams. The true m.Ls. parts are apparently not summable
into refractive index factors and do not seem to represent any of the macroscopic multiple
scattering processes we once conjectured (Bullough ef al. 1968; Bullough & Hynne 1968).

In the theory in terms of unscreened propagators, a principal problem which emerged was
the effects of finite volume. The key to these is a development of the multiple scattering terms
in terms of generalized Ursell functions or in terms of the Y-functions due to F. Hynne (1975).
The Ursell functions cover the connected parts of a multiple scattering integral to which Gelbart
refers. The terms which remain are disconnected, do not quite agree with those Gelbart quotes
at four-body, and play two roles: one is to provide vital factors, in terms of refractive index, to
the single scattering; the other is to provide specific terms which are of m.Ls. type. These are
surface dependent and represent in some way transmission and reflexion coefficients for multiple
scattering leaving the scattering volume. In the ‘bulk scattering theory’ (Hynne 1977) in terms
of screened photon propagators, these surface terms do not arise. The bulk theory is con-
cerned with an infinite scattering medium so that surface terms should indeed be absent.

We have examined these surface terms for the integrated three-body scattering (Bullough
et al. 1968; Bullough & Hynne 1968) and for four-body scattering. The latter contribute
terms to the depolarized intensity /& (d.ls.) (in- Gelbart’s notation). We have assumed that
the scattering volume is an infinite paral}el-sided slab with light normally incident upon it
because this is the scattering geometry for/ which it is easiest to calculate the behaviour of the
coherently transmitted light (more precisel,iy we consider a flat cylinder of very large radius and
a plane wave axially incident upon it). For the integrated intensity, or more specifically for

the optical extinction or turbidity, we have found no term linear in the slab width d. Typically,
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the oscillatory terms exp (ik,7) in the propagators r—1 exp (ik,7) of the radiation field are always
together sufficient to convert an integral linear in d to one which is, at most, finitely oscillating
at the surface of the slab. These terms represent the diffraction and transmission of the multiply
scattered light induced by the finite geometry. We have concluded from this that these terms
are weakly geometry dependent, that they depend-on £} for four-body scattering, and that
they can become important close enough (but very close) to the critical point.

For the scattered intensity at fixed scattering angle, however, there are also terms which
throw intensity from atomic group to atomic group of the scattering medium. These terms are,
roughly speaking, linear in the dimensions of the scattering region, and would diverge for an
infinite region (much as in Olber’s paradox in cosmology). In the particular geometry con-
sidered by Professor Gelbart (a small spherical illuminated region inside a larger spherical
scattering region), I can see that such terms could have the linear dependence on the radius Ry
of the scattering region he reports. We have not considered any spherical geometry in detail
because we are not able to handle the coherent and incoherent parts of the scattering con-
sistently for it.+ My fourth question to Professor Gelbart is, however, to ask him if he has also
looked at the non-depolarizing four-body m.l.s. and whether he considers that this scattering
might also have observable effects. In our view, the paradox between finite optical extinction
and divergent four-body depolarized m.l.s. can be resolved only because all four-body m.Ls.
processes combine together in the integrated scattering and we have proved quite generally
that the integrated scattering at whatever order properly determines the extinction. Plainly,
if terms linear in the size of the scattering cell arise in the expression for the extinction, it is no
longer possible to define a complex refractive index for a scattering medium which is indepen-
dent of its geometry, although other problems arise in the theory of complex refractive index
when the scattering is large.

Finally, I would like to remark that in an unscreened theory the wavevector of the incident
light takes on the refractive index of the scattering medium while the scattered wavevector
does not do so without further consideration of multiple scattering processes. If the distinction
between these two forms of wavevector is not made initially, it is not easy to disentangle the
coherent and incoherent parts of the scattering. Indeed, a linear term in the scattering dimen-
sion arises in the connection between the external field amplitude and the induced dipole
density, although this is not relevant to the R, dependence that Professor Gelbart finds in four-
body depolarized scattering. Since, as I understand it, he does not place the refractive index of
the medium in either the incident or scattered wavevector, I should like his opinion on the
correct form of these wavevectors, and whether he is certain he isolates correctly the incoherent
four-body scattering from the coherent scattering. This latter point has some bearing on the
relation between multiple scattering and single scattering, but without detailed analysis I
cannot see how numerically significant the details here might be.

References
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+ In spoken discussion I mistakenly gave the impression that I had earlier derived exactly the expression
I® (d.Ls.) reported by Professor Gelbart. I meant only to state that Hynne and myself have studied all com-
parable three-body and four-body surface termrs in our particular geometry. It is particularly nice to see the use
both Professor Gelbart and Reith and Swinney have made of the special features of four-body m.ls.
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W. M. GELBART. Professor Bullough’s first, second, fourth and fifth questions are all related to
the same fundamental problem, namely that of separating ‘real’ multiple scattering contri-
butions from refractive index corrections (macroscopic factors). In our published work on
depolarized light scattering at the gas-liquid critical point, we did not attempt to sum system-
atically the multiple scattering diagrams to arbitrary order in the interparticle correlations.
Thus, for example, we did not obtain a depolarization ratio which contains the appropriate
factors of n2 — 1, 2n2+ 1, etc. Nor did we include explicitly the attenuation of light in the sample.
Instead, our purpose was to characterize the functional form of the ‘real’ double scattering
contributions to the depolarization and to estimate their approximate dependence on wave-
length, temperature and sample dimensions. As discussed in the above paper, these predictions
have been unambiguously confirmed by the experiments of Reith & Swinney and of others
(see references in text).

As for the non-depolarizing higher order effects about which Professor Bullough enquires,
we have again treated them only approximately. In particular, we estimated the effects of the
four-body contributions [I# (d.ls.)] to the angular asymmetry of the polarized intensity.
These effects were found to give Ornstein—Zernicke-Debye plots with significant downward
curvature at small angles. F. Hynne (1977, see Bullough’s references), has most recently derived
two-body corrections which partially offset these four-body contributions and which were not
included in our original formulation; their relative importance can only be determined by
a consistent treatment of the coherent and incoherent multiple scattering effects. Hynne
discusses this general problem by means of the screening transformations (of the dipole propa-
gator) which describe the correct form for the incident and scattered wavevectors (see also
Ladanyi & Keyes (1976) and references in text).

The inclusion of multipole corrections to the polarizability of a pair of interacting atoms,
suggested by Professor Bullough in his remaining (third) question, has been considered by
several investigators during this past year. While I did not have a chance to describe this work
in my talk, it has been discussed critically in the above paper. The original Oxtoby-Gelbart
approach to collisional polarizabilities can be derived as an approximation to the first order
perturbation description of a pair of atoms in an external electric field; their assumption of
a local continuum electrostatics is consistent with a first order treatment of the Coulomb
interaction between the electrons and nuclei of the two atoms. A second iteration of the
continuum equations (see equations (36) and (37) in the text), however, brings in electric field
nonuniformities and hence induced polarization effects associated with quadrupole and higher
order multipole moments. These corrections do indeed change significantly the collisional
polarizability, as do the hyperpolarization and exchange effects also mentioned in the text. As
stressed there, the complete a priori calculation of interaction anisotropy remains an open
problem, even for the most simple of the noble gas systems.

Reference
Ladanyi, B. M. & Keyes, T. 1976 Molec. Phys. 32, 1685.

[ 165 ]


http://rsta.royalsocietypublishing.org/

